Revista Brasileira de Ginecologia e Obstetrícia. 2021;43(10):759-764
Breast surgery is considered a clean surgery; however, the rates of infection range between 3 and 15%. The objective of the present study was to intraoperatively investigate the presence of autochthonous microbiota in the breast.
Pieces of breast tissue collected from 49 patients who underwent elective breast surgery (reconstructive, diagnostic, or oncologic) were cultured. The pieces of breast tissue were approximately 1 cm in diameter and were removed from the retroareolar area, medial quadrant, and lateral quadrant. Each piece of tissue was incubated in brain heart infusion (BHI) broth for 7 days at 37°C, and in cases in which the medium became turbid due to microorganism growth, the samples were placed in Petri dishes for culturing and isolating strains and for identifying species using an automated counter.
Microorganism growth was observed in the samples of 10 of the 49 patients (20.4%) and in 11 of the 218 pieces of tissue (5%). The detected species were Staphylococcus lugdunensis, Staphylococcus hominis, Staphylococcus epidermidis, Sphingomonas paucimobilis, and Aeromonas salmonicida. No patient with positive samples had clinical infection postoperatively.
The presence of these bacteria in breast tissue in approximately 20% of the patients in this series suggests that breast surgery should be considered a potential source of contamination that may have implications for adverse reactions to breast implants and should be studied in the near future for their oncological implications in breast implant-associated large-cell lymphoma etiology.
Search
Search in:
Breast surgery is considered a clean surgery; however, the rates of infection range between 3 and 15%. The objective of the present study was to intraoperatively investigate the presence of autochthonous microbiota in the breast.
Pieces of breast tissue collected from 49 patients who underwent elective breast surgery (reconstructive, diagnostic, or oncologic) were cultured. The pieces of breast tissue were approximately 1 cm in diameter and were removed from the retroareolar area, medial quadrant, and lateral quadrant. Each piece of tissue was incubated in brain heart infusion (BHI) broth for 7 days at 37°C, and in cases in which the medium became turbid due to microorganism growth, the samples were placed in Petri dishes for culturing and isolating strains and for identifying species using an automated counter.
Microorganism growth was observed in the samples of 10 of the 49 patients (20.4%) and in 11 of the 218 pieces of tissue (5%). The detected species were Staphylococcus lugdunensis, Staphylococcus hominis, Staphylococcus epidermidis, Sphingomonas paucimobilis, and Aeromonas salmonicida. No patient with positive samples had clinical infection postoperatively.
The presence of these bacteria in breast tissue in approximately 20% of the patients in this series suggests that breast surgery should be considered a potential source of contamination that may have implications for adverse reactions to breast implants and should be studied in the near future for their oncological implications in breast implant-associated large-cell lymphoma etiology.
Comments